Home > ビデオ・アーカイブ

ビデオ・アーカイブ

本領域の事業の一環として,細胞運動のビデオのオンラインライブラリーを作成します.細菌,真核生物,アーキア(古細菌),ウイルス,タンパク質, 合成ポリマー,など様々なものの動きを公開します.それぞれのビデオは,私たちが生物学的に掲載価値があるかどうかを判断,分類し,和文と英文で解説します.

ライブラリー作成のため,皆さまに,(1) 研究者によるご自身の研究対象の投稿,(2) スーパーサイエンスハイスクールや生物部の活動などで顕微鏡をのぞいていて見つけた微生物の投稿,などをお願いします.また,(3) 論文のビデオなどで当ライブラリーにリンクしてほしいもの,(4) 周囲に眠っている古いビデオ教材などでアーカイブ化の価値がありそうなもの,については領域事務局までご一報ください.

ライブラリーのアクセスランキングを下記のリンク先で公開しています。直近の3か月のアクセス数の多いビデオ10本を見ることができます。

また、ビデオ・アーカイブをより手軽に楽しんで頂くために、閲覧用スマートフォンアプリを開発いたしました。
以下からダウンロードできますので、是非ご覧下さい。

ビデオ・アーカイブの収録ビデオの利用に関しては下記へご連絡下さい。

伊藤政博 (masahiro.ito@toyo.jp)
東洋大学生命科学部生命科学科 教授
〒374-0193 群馬県邑楽郡板倉町泉野1-1-1
電話&FAX:0276-82-9202(研究室)、0276-82-9305(5105実験室)

iOS版 Android版
ビデオライブラリQRコード iOS

ビデオライブラリQRコード Android
Get it on Google Play

ビデオ一覧

絞り込み検索

分類          
キーワード  

 

種名・頭文字から検索

頭文字
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

アクセスランキング

1

2015.08.06

真核生物 アクセス数:154
櫛形の藻類

種名:Amphora or Cymbella
AL-Museum AL-Museum

画面中央に櫛をつらねたように2個並び、1個の細胞内には沢山の微小顆粒が動いている。さっきまでそばにいたミドリムシは立ち去った。

AL-Museum

2

2014.07.19

分子・タンパク質 アクセス数:119
筋収縮中のアクチン結合ミオシン-II(クロスブリッジ)の動き

種名:Rabbit
大阪市立大学 片山栄作

 動画前半は従来の単純なレバーアーム首振り説に基づくミオシン・クロスブリッジ(頭部)の動きを示す。このような動きは、ATP結合の有無におけるミオシンの結晶構造の特徴、および、「張力発生中にモーター領域は動かない」との実験事実に基づいて想定された。パワーストロークは、ATP非結合状態においてアクチンと強く結合する硬直複合体中のミオシン(1DFK:レバーアームは伸展状態)と、ATPを結合しレバーアームが強く屈曲した構造(1DFL) の間の遷移である。アクチンに結合するモーター領域がアクチンに固定されればレバーアーム部分が動き、首を振ることになる。   動画後半は急速凍結レプリカ法により片山(文献1-2) が直接観察した電子顕微鏡画像から示唆されるミオシン頭部の動きを示し、われわれの解析(文献3-5)により存在が明らかになった新たな中間体の構造を含む。In vitroアクチン滑り運動中のミオシンの急速凍結レプリカ像は、動画前半にある従来の説では説明不可能なクロスブリッジの構造を示した(文献2)。われわれはその構造を説明できる新たな中間体を見出し(文献4)、その3次元構造を再構成した(文献4-5)。その新たな構造を含め、時分割化学架橋法による結果(文献6)を勘案することにより、観察結果の妥当な解釈が可能となった(文献5)。クロスブリッジ・サイクル過程の大部分で新たなコンフォメーションを取っていることが想定される。 [文献] 1. Katayama E. The effects of various nucleotides on the structure of actin-attached myosin subfragment-1 studied by quick-freeze deep-etch electron microscopy. J Biochem. 1989 Nov;106(5):751-70. 2: Katayama E. Quick-freeze deep-etch electron microscopy of the actin-heavy meromyosin complex during the in vitro motility assay. J Mol Biol. 1998 May 1;278(2):349-67. 3: Katayama E, Ohmori G, Baba N. Three-dimensional image analysis of myosin head in function as captured by quick-freeze deep-etch replica electron microscopy. Adv Exp Med Biol. 1998;453:37-45. 4: Katayama E, Ichise N, Yaeguchi N, Yoshizawa T, Maruta S, Baba N. Three-dimensional structural analysis of individual myosin heads under various functional states. Adv Exp Med Biol. 2003;538:295-304. 5: Kimori Y, Baba N, Katayama E. Novel configuration of a myosin II transient intermediate analogue revealed by quick-freeze deep-etch replica electron microscopy. Biochem J. 2013 Feb 15;450(1):23-35. 6. Andreev OA, Reshetnyak YK. Mechanism of formation of actomyosin interface. J Mol Biol. 2007 Jan 19;365(3):551-4.

3

2013.07.18

真核生物 アクセス数:113
ケラトサイトの遊走

山口大学 理学部 沖村 千夏

ケラトサイトは魚類の表皮細胞で、50~100 μm 程の大きさです。魚が傷を負った時に傷口をふさごうと傷の周囲から這って集まってきます。みんな焼き餃子のような同じ形を保ったまま這い回ります。この“かたち”をどうやって保っているのでしょうか?

4

2015.08.27

モデル(解説を含む) アクセス数:75
Self-motion of camphor in cells with various shapes (5)

広島大学大学院理学研究科 中田 聡

Uni-directional motion determined by the initial condition without boundary.

A theoretical and experimental study on the unidirectional motion of a camphor disk

5

2014.03.13

真核生物 アクセス数:75
ミドリムシのユーグレナ運動(すじりもじり運動)

種名:Euglena
神戸大学理学研究科洲崎研究室 早川昌志

ミドリムシ(Euglena gracilis)の、ユーグレナ運動(すじりもじり運動)です。 ミドリムシは、鞭毛によって遊泳運動をすることが有名ですが、光刺激、機械刺激、化学­刺激を与えると、このような細胞変形運動を行います。 この動画では、カバーグラスで軽く潰すことによる機械刺激で、ユーグレナ運動を引き起­こしています。

6

2014.09.16

その他 アクセス数:69
Marvels of Bacterial Behavior - History & Physics

Harvard University, Department of Molecular and Cellular Biology Professor Howard Berg

Talk overview: Berg begins his lecture with a brief history of observations of bacterial motion. He then uses physics to describe the many hurdles that E. coli must overcome as it tries to swim up or down a chemical gradient. For instance, an entity as tiny as E. coli is constantly buffeted by Brownian motion and can neither stay still nor swim in a straight line. Then there is the question of how E. coli senses a gradient and translates that information into a change in its direction of movement. And finally, how does E. coli use its flagella to generate thrust at all? In Part 2, Berg explains that E. coli travels using a series of runs, when it moves in a straight line, and tumbles, when it changes direction. During a run, all of the flagella are moving counterclockwise in a tight bundle. During a tumble, one or more flagella switch to a clockwise movement and disengage from the bundle causing a change in the swimming direction. The motor that drives the rotation of the flagella is an amazing structure made of about 20 different protein parts. Berg tells us that chemosensory receptors on the cell surface detect a chemical gradient and transfer this information, via protein phosphorylation, to the motor. This chemical modification determines the direction of motor rotation and, hence, the direction the E. coli swims. An amazing system that E. coli has been perfecting for millions of years! Speaker biography: Howard Berg is the Herchel Smith Professor of Physics and a Professor of Molecular and Cellular Biology at Harvard University and a member of the Rowland Institute for Science at Harvard. He received his B.S. in Chemistry from the California Institute of Technology and his Ph.D. in Chemical Physics from Harvard University. Berg was on the faculty of the University of Colorado and Cal Tech before joining Harvard in 1986. Berg's lab applies methods from physics to biological problems. They strive to understand how a bacterium, such as E. coli, can sense changes in its environment and respond by swimming towards, or away from, a stimulus. To this end, the lab studies the mechanics of the bacterial flagellar motor and how it is regulated by signals from cell surface receptors. Berg has received numerous awards and honors for his work including election to the National Academy of Sciences and the American Academy of Arts and Sciences.

7

2013.07.10

原核生物 アクセス数:68
Tenacibaculum maritimumの滑走運動

種名:Tenacibaculum maritimum
帯広畜産大学 楠本晃子

Tenacibaculum maritimumはマダイ、クロダイ、ヒラメなどの海水魚に感染し、滑走細菌症を引き起こします。養殖場で大量死をもたらすこともあるため、養殖場で重要な細菌感染症のひとつとして知られています。本菌は滑走運動をおこないますが、その分子メカニズムは不明で、また、病原性との関連性についてもまったく研究がなされていません。

8

2014.03.29

真核生物 アクセス数:59
Amoebophyraに寄生されたウネリサボテンムシの動き

種名:Sticholonche zanclea
兵庫県立大学大学院生命理学研究科 谷口篤史

球体の表面から多数の棘が生えたような形をした放散虫で、他の放散虫と比べて変わった形態をしています。普段はゆっくりと運動を行いますが、Amoebophyraという渦鞭毛藻に寄生された個体ではAmoebophyraが細胞内で動くことによって棘も大きく動きます。

9

2014.01.23

真核生物 アクセス数:56
ミドリムシのstep-up光驚反応

種名:Euglena gracilis
東邦大学薬学部 伊関峰生

ミドリムシは、急激な青色光の強度変化に応答して、その遊泳方向を一氣に変えます。これを光驚動反応といいます。急に青色光が強くなったときに観察される光驚動反応をステップアップ光驚動反応といい、急に弱くなったときに観察されるのがステップダウン光驚動反応です

seki, M., et. al. A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415,1047-1051 (2002).
Matsunaga, S., et al. Discovery of signaling effect of UV-B/C light in the extended UV-A/blue-type action spectra for step-down and step-up photophobic responses in the unicellular flagellate alga Euglena gracilis. Protoplasma 201, 45-52 (1998).

10

2015.06.18

分子・タンパク質 アクセス数:55
High speed AFM observation of growth of a cofilin cluster toward the pointed end of a filament.

National Institute of Advanced Industrial Science and Technology (AIST) and Kanazawa University Ngo Xuan Kien, 古寺哲幸、上田太郎

AFM images of actin filaments have double-helical appearance, with alternating bright and dark patterns. The bright areas are the tall parts of the filament, where the two protofilaments align vertically (peaks). Cofilin binds cooperatively to actin filaments, forming clusters. Those cofilin clusters are identified in AFM images as brighter peaks, due to thickening of the filament, and shorter helical pitch (distance between the peaks) representing “supertwisting”. Cofilin clusters grow unidirectionally toward the pointed end of the filament. White arrowheads show growth of the cofilin cluster, and yellow and magenta arrowheads show binding of S1. Magenta arrowheads indicate S1 molecules whose binding angle could not be determined, either for geometric reasons (i.e., binding on the upper face of the filament) or because the binding was too short-lived. Cofilin clusters grew unidirectionally to the pointed end direction in the presence of ADP only or ADP+Pi, indicating that this is independent on the gradient of chemical states of actin subunits along the length. For details, please see the original paper linked below. Conditions: F buffer containing 1 mM ADP, 0.1 mM ATP, 20 nM S1, and 75 nM cofilin. Imaged at 2 frames/s and played at 5 frames/s. The width of the imaged field: 280 nm, Z-scale: 0–12 nm.

eLife, 4:e04806, 2015

このページの先頭へ