Home > ビデオ・アーカイブ

ビデオ・アーカイブ

本領域の事業の一環として,細胞運動のビデオのオンラインライブラリーを作成します.細菌,真核生物,アーキア(古細菌),ウイルス,タンパク質, 合成ポリマー,など様々なものの動きを公開します.それぞれのビデオは,私たちが生物学的に掲載価値があるかどうかを判断,分類し,和文と英文で解説します.

ライブラリー作成のため,皆さまに,(1) 研究者によるご自身の研究対象の投稿,(2) スーパーサイエンスハイスクールや生物部の活動などで顕微鏡をのぞいていて見つけた微生物の投稿,などをお願いします.また,(3) 論文のビデオなどで当ライブラリーにリンクしてほしいもの,(4) 周囲に眠っている古いビデオ教材などでアーカイブ化の価値がありそうなもの,については領域事務局までご一報ください.

ライブラリーのアクセスランキングを下記のリンク先で公開しています。直近の3か月のアクセス数の多いビデオ10本を見ることができます。

また、ビデオ・アーカイブをより手軽に楽しんで頂くために、閲覧用スマートフォンアプリを開発いたしました。
以下からダウンロードできますので、是非ご覧下さい。

ビデオ・アーカイブの収録ビデオの利用に関しては下記へご連絡下さい。

伊藤政博 (masahiro.ito@toyo.jp)
東洋大学生命科学部生命科学科 教授
〒374-0193 群馬県邑楽郡板倉町泉野1-1-1
電話&FAX:0276-82-9202(研究室)、0276-82-9305(5105実験室)

iOS版 Android版
ビデオライブラリQRコード iOS

ビデオライブラリQRコード Android
Get it on Google Play

ビデオ一覧

絞り込み検索

分類          
キーワード  

 

種名・頭文字から検索

頭文字
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

アクセスランキング

2014.10.27

その他
History of Mycoplasma gliding in Japan-1

種名:Mycoplasmas
大阪市立大学 宮田真人

2012年に盛岡で行われた日本マイコプラズマ学会での宮田の講演

Unique Centipede Mechanism of Mycoplasma Gliding

2014.10.27

その他
History of Mycoplasma gliding in Japan-2

種名:Mycoplasmas
大阪市立大学 宮田真人

2012年に盛岡で行われた日本マイコプラズマ学会での宮田の講演.

Unique centipede mechanism of Mycoplasma gliding

2014.10.25

真核生物
Mitotic Spindle Assembly around RCC1-Coated Beads in Xenopus Egg Extracts (No. 1)

Department of Molecular & Cell Biology, University of California–Berkeley, Berkeley, California, United States of America Professor Rebecca Heald

Two side-by-side fluorescence time-lapse movies of egg extract spindle assembly reactions containing rhodamine labeled tubulin are shown over the time interval of 38 min. On the left is a spindle formed around an RCC1-coated bead (green), and on the right a spindle assembled around a chromatin-coated bead (blue). Note that the RCC1 bead spindle is smaller, and that the bead oscillates from pole-to-pole.

Plos Biology

2014.10.25

真核生物
Mitotic Spindle Assembly around RCC1-Coated Beads in Xenopus Egg Extracts (No. 2)

Department of Molecular & Cell Biology, University of California–Berkeley, Berkeley, California, United States of America Professor Rebecca Heald

Behavior of a monopolar RCC1 bead spindle. Fluorescence time-lapse movie of Xenopus egg extract spindle assembly reaction containing rhodamine labeled tubulin is shown over a time interval of 21 min. Note that the microtubules appear to push the bead, which is trailed by microtubules.

Plos Biology

2014.10.25

真核生物
Mitotic Spindle Assembly around RCC1-Coated Beads in Xenopus Egg Extracts (No. 3)

Department of Molecular & Cell Biology, University of California–Berkeley, Berkeley, California, United States of America Professor Rebecca Heald

The effect of coupling kinesin 1 motor domain together with RCC1 to the bead. Two side-by-side fluorescence time-lapse movies of Xenopus egg extract containing rhodamine labeled tubulin and beads coated with RCC1 plus kinesin-1 motor domain, shown over the same time interval of 37 min.

Plos Biology

2014.10.25

真核生物
Mitotic Spindle Assembly around RCC1-Coated Beads in Xenopus Egg Extracts (No. 4)

Department of Molecular & Cell Biology, University of California–Berkeley, Berkeley, California, United States of America Professor Rebecca Heald

The effect of coupling kinesin 1 motor domain mutant R203K together with RCC1 to the bead. Two side-by-side fluorescence time-lapse movies of egg extract spindle assembly containing rhodamine labeled tubulin and a bead coated either with RCC1 (left) or with RCC1 plus kinesin-1 motor domain ATPase mutant R203K, shown over the same time interval of 49 min.

Plos Biology

2014.10.25

真核生物
Mitotic Spindle Assembly around RCC1-Coated Beads in Xenopus Egg Extracts (No. 5)

Department of Molecular & Cell Biology, University of California–Berkeley, Berkeley, California, United States of America Professor Rebecca Heald

The effect of coupling EB1 together with RCC1 to the bead. Fluorescence time-lapse movie of egg extract spindle assembly reaction containing rhodamine labeled tubulin and a bead coated with RCC1 plus EB1, shown over a time interval of 40 min. EB1 does not diminish bead oscillation.

Plos Biology

2014.10.25

その他
Microtubule (MT) repolymerization in CHO cells

Department of Molecular Genetics, VIB and University of Antwerp, Antwerpen, Belgium,  Professor Sophie Janssens

CHO HSPB1− (top) and CHO HSPB1+ (bottom) were transfected with EB1-GFP, treated with nocodazole and washed while imaging with spinning disk confocal microscopy. Image z-stacks comprising the complete volume of the cells were acquired every 5 sec. The movie shows the maximum intensity projections of all slices in the z-stack with inverted grey scale. Images on the right are shown with overlaid EB1-GFP tracks. Note much more non-centrosomal and centrosomal MTs were formed in HSPB1+.

Plos One

2014.10.25

分子・タンパク質
Non-centrosomal microtubules (MTs) traced by EB1-GFP in steady state cells

Department of Molecular Genetics, VIB and University of Antwerp, Antwerpen, Belgium, Professor Sophie Janssens

CHO HSPB1− (top) and CHO HSPB1+ (bottom) were transfected with EB1-GFP and imaged with spinning disk confocal microscopy. Image z-stacks comprising the centrosomal and Golgi region were acquired every 3 sec. The images on the left show the maximum intensity projections of all slices in the z-stack with inverted grey scale. Images on the right show these as cumulative maximum intensity projections over the elapsed time. Note the large number of non-centrosomal MTs (Microtubules) formed in CHO-HSPB1+ cells.

Plos One

2014.10.23

モデル(解説を含む)
Part 1: GTP-binding Proteins as Molecular Switches

Max-Planck Institute Professor Alfred Wittinghofer

When a growth factor binds to the plasma membrane of a quiescent cell, an intracellular signaling pathway is activated telling the cell to begin growing. A key molecule in this signaling pathway is the GTP-binding protein, or G-protein, Ras. Ras can act as an on-off switch telling the cell to grow or not. In its inactive form, Ras is bound to GDP while in its active form it is bound to GTP. This exchange of nucleotides is catalysed by guanine nucleotide-exchange-factors (GEFs). The return to the inactive state occurs through the GTPase reaction, which is accelerated by GTPase-activating proteins (GAPs). In Part 1 of his talk, Dr. Wittinghofer explains how solving the three-dimensional structure of Ras, and other G-proteins, allowed him to understand the conserved mechanism by which G-proteins can act as switches. The structure also identified domains unique to each G-protein that provide the specificity for downstream signals.

704 件中 351-360 件目

このページの先頭へ